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Abstract
In this paper, we present a novel SVM-based approach to construct multiclass classi-
fiers by means of arrangements of hyperplanes. We propose different mixed integer
(linear and non linear) programming formulations for the problem using extensions of
widely used measures for misclassifying observations where the kernel trick can be
adapted to be applicable. Some dimensionality reductions and variable fixing strate-
gies are also developed for thesemodels. An extensive battery of experiments has been
run which reveal the powerfulness of our proposal as compared with other previously
proposed methodologies.
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1 Introduction

Support vector machine (SVM) is a widely-used methodology in supervised binary
classification, firstly proposed by Cortes and Vapnik (1995). Given a number of obser-
vations with their corresponding labels, the SVM technique consists of finding a strip
in the feature space so that each class is included in a different semispace maximizing
the separation between classes (in a training sample) and minimizing some measure
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of the misclassification errors. This problem can be cast within the class of convex
optimization and its dual has very good properties. Actually, one can project the orig-
inal data out onto a higher dimensional space where the separation of the classes can
be more adequately performed, and still keeping the same computational effort that
was required in the original problem. This fact is the so-called kernel trick, and very
likely this is one of the reasons that has motivated the successful use of this tool in
a wide range of applications (see Bahlmann et al. 2002; Harris 2013; Kašćelan et al.
2016; Majid et al. 2014; Radhimeenakshi 2016).

Most of the SVM literature concentrates on binary classification where several
extensions are available. One can use different measures for the separation between
classes (see e.g., Blanco et al. 2019; Ikeda and Murata 2005a, b), select important
features (Labbé et al. 2018), apply regularization strategies (López et al. 2018), etc.
However, the analysis of SVM-based methods for datasets with more than two classes
has been, from our point of view, only partially investigated. Given a training sample
of observations {x1, . . . , xn} ⊆ R

p with their labels (y1, . . . , yn) ∈ {1, . . . , k}n , the
k-label (k > 2) SVM consists of constructing a decision rule able to classify out-of-
sample observations learning from the training sample.

The most common techniques applied to supervised multiclass classification are
based on natural extensions of the tools valid for the binary case: Deep Learning
(Agarwal et al. 2018), k-Nearest Neighborhoods (Coven and Hart 1967; Tang and Xu
2016) or Naïve Bayes (Lewis 1998), among others.

In addition, one can also find some techniques for multiclass classification that take
advantage of the SVMmethods for binary classification. The most popular multiclass
SVM-based approaches are One-Versus-All (OVA) and One-Versus-One (OVO). The
former, namely OVA, computes, for each class r ∈ {1, . . . , k}, a binary SVM classifier
labeling the observations as 1, if the observation is in the class r and−1 otherwise. The
process is repeated for all classes (k times), and then each observation is classified into
the class whose constructed hyperplane is the furthest from it in the positive halfspace.
In the OVO approach, classes are separated with

(k
2

)
hyperplanes using one hyperplane

for each pair of classes, where the decision rule comes from a voting strategy in which
the most represented class among votes becomes the class predicted. OVA and OVO
inherit most of the good properties of binary SVM. In spite of that, they are not able to
correctly classify datasets where separated clouds of observations may belong to the
same class (and thus are given the same label) when a linear kernel is used. Another
popular method is the directed acyclic graph SVM, DAGSVM (Platt et al. 2000). In
this technique, although the decision rule involves the same hyperplanes built with
the OVO approach, it is not given by a unique voting strategy but for a sequential
number of votings in which the most unlikely class is removed until only one class
remains. In addition, apart fromOVAandOVO, there are some othermethods based on
decomposing the original multiclass problem into several binary classification ones. In
particular, in (Allwein et al. 2001) and (Dietterich andBakiri 1995), this decomposition
is based on the construction of a coding matrix that determines the pairs of classes that
will be used to build the separating hyperplanes. Alternatively, other methods such
as CS (Crammer and Singer 2001), WW (Weston and Watkins 1999) or LLW (Lee
et al. 2004), do not address the classification problem sequentially but as a whole
considering all the classes within the same optimization model. Obviously, this seems
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to be the correct approach. In particular, in WW, k hyperplanes are used to separate
the k classes, each hyperplane separating one class from the others, using k − 1
misclassification errors for each observation. The same separating idea, is applied in
CS but reducing the number ofmisclassification errors for each observation to a unique
value. In LLW, a different error measure is proposed to cast the Bayes classification
rule into the SVM problem implying theoretical statistical properties in the obtained
classifier. These properties cannot be ensured in WW or CS.

We can also find a quadratic extension based on LLW proposed by Guermeur and
Monfrini (2011). Finally, van denBurg andGroenen (2016) propose amulticlass SVM-
based approach,GenSVM, in which the classification boundaries for a problem with k
classes are obtained in a (k−1)-dimensional space using a simplex encoding. Some of
these methods have become popular and are implemented in most software packages
inmachine learning ase1071 (Meyer et al. 2017),scikit-learn (Pedregosa et al.
2011) or MSVMpack and Guermeur (2011). Nevertheless, as far as we are concerned,
none of the existing multiclass SVMmethods keeps the essence of binary SVMwhich
stems from finding a globally optimal partition of the feature space.

This paper proposes a novel approach to handle multiclass classification extending
the paradigm of binary SVM classifiers. In particular, our method finds a polyhedral
partition of the feature space and an assignment of classes to the cells of the partition,
by maximizing the separation between classes and minimizing two intuitive misclas-
sification errors. Obviously, as in standard SVM,we can also account in different ways
the misclassification errors (hinge or ramp-based losses). For bi-class instances, and
using a single separating hyperplane, our method coincides with the standard SVM.
Nevertheless, even for 2-classes datasets, new alternatives appear if more than one
hyperplane is permited to separate the data. In particular, our approach allows one to
generalize the polyhedral conic classifiers presented in (Bagirov et al. 2013).

Apart from justifying the rationale of our method, we also propose different
mathematical programming formulations in order to solve the resulting optimiza-
tion problems. These formulations belong to the family of Mixed Integer (Linear and
Non Linear) Programming (MILP and MINLP) problems, in which the nonlinearities
come from the representation of the Euclidean distance margin between classes, that
can be modeled as a set of second order cone constraints (see Blanco et al. 2014). This
type of constraints can be handled nowadays by any of the most popular off-the-shelf
optimization solvers (CPLEX, Gurobi, XPress, SCIP,…).

These models also have a combinatorial nature induced by the correct allocation
of labels to cells. Therefore, they require to use some binary variables. This approach
is not new and recently, a few attempts have been proposed for different classification
problems using discrete optimization tools. For instance, Üney and Türkay (2006)
construct classification hyperboxes for multiclass classification, Bennett and Demiriz
(1999) provide formulations for SVM with unlabelled data (semi-supervised SVM),
and Ghaddar and Naoum-Sawaya (2018), Labbé et al. (2018) and Maldonado et al.
(2014),mixed integer linear programming tools for feature selection inSVM.Handling
a large number of binary variables in the models may become an inconvenient when
trying to compute classifiers for medium to large size instances. This inconvenience is
alleviated with some preprocessing and dimensionality reduction techniques that are
also introduced.
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In case the data are, by nature, nonlinearly separable, in classical SVM one can
apply the so-called kernel trick to project the data out onto a higher dimensional space
where the linear separation has a better performance. The key point is that one does not
need to know neither the dimension of the final space nor the specific transformation
that is applied to the data: the resulting mathematical programming problem is in the
same space as the original one. Here, we show that the kernel trick can be extended
to our framework and therefore, it also allows us to find nonlinear classifiers with this
methodology.

To assess the validity of our method we have performed a battery of computational
tests on two different families of data. We have tested our method against some well-
known multiclass SVM classifiers (OVO, CS, WW and LLW) on 7 databases from
different repositories. Moreover, we also report results on synthetic datasets specially
tailored to capture the difficulty of multiclass supervised classification. In all cases,
our methods give results similar or superior to those provided for the other methods.
In particular, for the synthetic data instances the improvement in accuracy on the test
samples are remarkable (see Table 3).

The rest of the paper is organized as follows. In Sects. 2 and 3 we describe and set
up the elements of the problem to be considered. Afterward, we introduce a MINLP
formulation for our model. Alternatively, we also present a linear version, which is
obtained whenever the margins are measured with the �1-norm. A discussion on the
extension, with very few modifications, of the previous models to the Ramp Loss
versions is included as well. In Sect. 3.2 we show how an analogue to the kernel
trick can be extended to be applied in this model. Section 4 describes some heuristic
strategies, preprocessing and dimensionality reductions to obtain good quality initial
solutions of the MINLP. Finally, in Sect. 5 we report our computational results on
different real and synthetic datasets, and compare our method with the standard ones
for multiclass SVM.

2 Multiclass support vector machines

In this section, we introduce the problem under study and set the notation used through
this paper.

Given a training sample {(x1, y1), . . . , (xn, yn)} ⊆ R
p × {1, . . . , k} the goal of

supervised classification is to find a decision rule to assign labels (y) to data (x),
in order to be applied to out-of-sample data. We assume that a given number, m,
of hyperplanes in R

p have to be built to obtain a subdivision of this space into full
dimension polyhedral regions that we shall denote as cells. (Here, we would like
to mention that the term cell stands for a nonempty intersection of the semispaces
induced by the hyperplanes in the considered family). Let us denote by H1, . . . ,Hm

the hyperplanes to be found, which are in the form Hr = {z ∈ R
p : ωt

r z + ωr0 = 0}
for some ωr ∈ R

p, ωr0 ∈ R, for r = 1, . . . ,m (here vt stands for the transpose
operator applied to the vector v ∈ R

p). Each cell induced with such an arrangement
of hyperplanes will be then assigned to a label in {1, . . . , k}. In Fig. 1 we illustrate a
subdivision of R2 induced by 2 hyperplanes and the labels assigned to each cell. In
the left figure, we represent the observations, highlighting the classes with different
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Class Stars

Class Stars

Class Squares

Class Circles

Fig. 1 Illustration of a subdivision induced by 2 hyperplanes in R2

symbols (stars, circles and squares). In the right figure, two hyperplanes which induce
4 cells are constructed to separate the three classes. Each cell is assigned to a class
(north → circles, south → stars, east → stars and west → squares). In this example
the subdivision in cells and the assignment of labels reaches a perfect classification
on the given observations.

From the above, we would like to construct an arrangement ofm hyperplanes,H =
{H1, . . . ,Hm}, determined byω1, . . . , ωm ∈ R

p (coefficients) andω10, . . . , ωm0 ∈ R

(intercepts) and a decision rule that assigns a single label to each one of the cells in the
subdivision of the space induced by such an arrangement. We would like to point out
that each cell in the subdivision can be univocally identified with a {−1,+1}-vector
in R

m : the �-component of that vector represents the side (positive or negative) with
respect to the hyperplane H� where that cell lies in.

Definition 2.1 (Suitable assignment) Given a subdivision C of Rp into cells induced
by the arrangement of hyperplanes H = {H1, . . . ,Hm} in R

p, a function g :
{−1, 1}m → {1, . . . , k} is said a suitable assignment, if g univocally maps cells
(equivalently, sign-patterns) to labels in {1, . . . , k}.

Observe that a suitable assignment, g, allows us to classify any observation x ∈ R
p

within the set of classes {1, . . . , k}, as follows:
1. Identify x with a sign-pattern: s(x) = (s1(x), . . . , sm(x)) ∈ {−1,+1}m , where

sr (x) = sign(ωt
r x + ωr0) for r = 1, . . . ,m.

2. Apply the function g to the sign-patterns: ŷ(x) = g(s(x)) ∈ {1, . . . , k}, is the
predicted label of x .

The quality of the decision rule is based, on comparing predictions and actual labels
on a training sample, but also onmaximally separating the classes in order to find good
predictions and avoid undesired overfitting.

SVM is a particular case of our approach for classifying two-class data sets if
m = 1, i.e., a single hyperplane to subdivide the feature space is used. In such a case,
signs are in {−1, 1} and classes in {1, 2}, so whenever there are observations in both
classes, the assignment is one-to-one. However, even for biclass instances, if more
than one hyperplane is used, one may find better classifiers (we illustrate this behavior
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Fig. 2 Standard SVM (left) and our approach with 2 hyperplanes (right)

Fig. 3 A 5-classes instance classified with our approach using 5 hyperplanes (left) and a 6-classes instance
classified with our approach using 5 hyperplanes (right)

with the dataset 2C4N of our computational experiments in Table 3). In Fig. 2, left-
and-right, we draw the same dataset of labeled (red and blue) observations and the
result of applying a standard SVM (left) and our method with 2 hyperplanes. In that
picture one may see that not only the misclassification errors are smaller with two
hyperplanes, as expected, but also the separation between classes is larger, improving
the predictive power of the classifier.

The rationale of our approach is particularly adequate for datasets in which there
are several separated “clouds” of observations that belong to the same class. In Fig. 3,
we show two different instances in which, again, the colors indicate the class of the
observations. The classes in both instances cannot be appropriately separated using
any of the available linear SVM-basedmethods in the literature since they are based on
subdividing the space on class-connected regions. However, we are able to perfectly
separate the classes using 5 hyperplanes.
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Fig. 4 A 4-classes instance classified with our approach using 4 hypeplanes (left) and the same intance
classified using the OVO SVM approach (right)

In Fig. 4 we compare our approach and the One-versus-One (OVO) approach in an
instance with 24 observations. In the left figure we show the result of separating the
classes with four hyperplanes, reaching a perfect classification on the training sample.
In the right figure we show the best linear OVO classifier, in which only 66% of the
data were correctly classified. We would also like to highlight that, although nonlinear
SVM-approaches may separate the data more conveniently, our approach may help to
avoid using kernels and ease the interpretation of the results.

Different alternatives could be admissible to justify the rationale of the multiclass
classifiers in our framework. To simplify the presentation, we will concentrate on two
different models which share the same paradigm but differ in the way they account
for misclassification errors. Recall that in SVM-based methods, two criteria are simul-
taneously optimized when constructing a classifier. On the one hand, a measure of
the quality of the decision rule on out-of-sample observations, based on finding a
maximum separation between classes; and on the other hand a measure of the mis-
classification errors for the training set of observations. Both criteria are adequately
weighted in order to find a good compromise between the two goals.

In what follows we describe how similar measures can be defined in our multiclass
classification framework and the way we account them for.

2.1 Separation between classes

Separation between classes will be measured as it is usual in SVM-based methods. Let
ω1, . . . , ωm ∈ R

p and ω10, . . . , ωm0 ∈ R be the coefficients and intercepts of a set of
hyperplanes. The distance induced by a norm ‖ · ‖ between the shifted hyperplanes
H+

r = {z ∈ R
p : ωt

r z + ωr0 = 1} andH−
r = {z ∈ R

p : ωt
r z + ωr0 = −1} is given by

2
‖ω̄r‖∗ , where ‖ · ‖ is a given norm in Rp and ‖ · ‖∗ is its dual norm (see Mangasarian

1999). Unless explicitly mentioned, we will consider that ‖ · ‖ is the Euclidean norm
which dual is also the Euclidean norm.

Hence, in order to find globally optimal hyperplanes with maximum separation, we

maximize the minimum separation between classes, that is min
{

2
‖ω1‖ , . . . , 2

‖ωm‖
}
.

This measure will conveniently keep the minimum separation between classes as
large as possible. Observe that finding the maximum min-separation is equivalent to
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minimize max{ 12‖ω1‖2, . . . , 1
2‖ωm‖2}. For a given arrangement of hyperplanes,H =

{H1, . . . ,Hm}, we will denote by hH (H1, . . . ,Hm) = max{ 12‖ω1‖2, . . . , 1
2‖ωm‖2}.

We note in passing that different criteria could have been used to model the separa-
tion between classes. For instance, onemay consider tomaximize the summation of all
separations namely

∑m
r=1

2
‖ωr‖2 or the inverse of that summation, namely 2∑m

r=1 ‖ωr‖2 .
However, although mathematically possible, these approaches do not capture the orig-
inal concept in classical SVM and we have left them to be developed by the interested
reader.

2.2 Misclassification errors

The performance of a classifier on the training set is usually measured with some
function of the misclassification errors. Classical SVMs with hinge-loss errors use,
for non well-classified observations, a penalty proportional to the distance to the side
in which they would have been well-classified. Then the overall sum of these errors
is minimized. We extend the notion of hinge-loss errors to the multiclass setting as
follows.

Let H = {H1, . . . ,Hm} be an arrangement of hyperplanes and (x, y) a pair obser-
vation (x), label (y), with s(x) = (s1(x), . . . , sm(x)) being the sign-pattern of x with
respect to the hyperplanes in H. Let g : {−1, 1}m → {1, . . . , k} be a suitable assign-
ment. We denote by t(x) = (t1(x), . . . , tm(x)) the signs of the closest cell to x whose
class by g is y. We will say that (x, y) is wrong-classified with respect to Hr if
sr (x) �= tr (x), otherwise it is said that (x, y) is well-classified.

In what follows we describe the different error measures (misclassification errors
due to different causes) that will be considered for x in order to construct an optimal
decision rule.

Definition 2.2 (Multiclass in-marginHinge-Loss) Themulticlass in-margin hinge-loss
for (x, y) with respect to the hyperplane Hr is given as:

hI

(
x, y,Hr

)
=

{
max{0, 1 − sr (x) · (ωt

r x + ωr0)} if x is well classified through Hr ,
0 otherwise.

Observe that hI models the error due to observations that although adequately
classified with respect to Hr , belong to the margin between the shifted hyperplanes
H+

r andH−
r . These errors will be zero if the observation is wrong-classified, or if it is

well-classified and does not belong to the margin induced by the r -th hyperplane.

Definition 2.3 (Multiclass out-margin Hinge-Loss) The multiclass out-margin hinge-
loss for (x, y) with respect to the hyperplane Hr is given as:

hO
(
x, y,Hr

)
=

{
1 − tr (x) · (ωt

r x + ωr0) if x is not well classified throughHr ,
0 otherwise.

hO measures, for wrong-classified observations, how far they are from being well-
classified. This error is zero whenever an observation is well-classified. Note that if
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hI > 0

hO > 0

Fig. 5 Illustration of the error measures considered in our approach

an observation, besides being wrong-classified, belongs to the margin between H+
r

andH−
r , then only hO should be accounted for. In Fig. 5 we illustrate the differences

between the two types of losses.

3 Mixed integer non linear programming formulations

In this section we describe the two mathematical optimization models that we propose
for the multiclass classification problem. Using the notation introduced in previous
sections, the problem can be mathematically stated as follows:

min hH (H1, . . . ,Hm) + C1

n∑

i=1

m∑

r=1

hI

(
xi , yi ,Hr

)
+ C2

n∑

i=1

m∑

r=1

hO
(
xi , yi ,Hr

)

(1)

s.t.Hr is a hyperplane in R
p, for r = 1, . . . ,m.

C1 and C2 are parameters which model the cost of misclassified and strip-related
errors. Usually these constants will be considered equal, nevertheless, in practice
analyzing different values for themmight lead to better results on predictions. A case of
interest results considering C2 = mC1, i.e., the unitary cost of misclassification errors
caused by out-margin observations is m times the unitary cost caused by in-margin
observations. This method gives a larger penalty to wrongly classified observations,
avoiding the calibration of a larger number of parameters.

Observe that the problem above consists of finding the arrangement of hyperplanes
minimizing a combination of the three quality measures described in the previous
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section: 1) the maximummargin between classes, 2) the overall sums of the in-margin
errors and 3) the out-margin misclassification errors. In what follows, we describe
how the above problem can be re-written as a mixed integer non linear programming
problem by means of adequate decision variables and constraints. Furthermore, the
proposed model will consist of a set of continuous and binary variables, a linear
objective function, and a set of linear and second order cone constraints. This form
allows us to push the model to a commercial solver.

First, we describe the variables and constraints needed to model the first term
in the objective function. We consider the continuous variables ωr ∈ R

p and
ωr0 ∈ R to represent the coefficients and intercept of the hyperplane Hr , for
r = 1, . . . ,m. Since there is no distinction between hyperplanes, we can assume,
without loss of generality that they are non-decreasingly sorted with respect to
the norms of their coefficients, i.e., ‖ω1‖ ≥ ‖ω2‖ ≥ · · · ≥ ‖ωm‖. Then, it is
straightforward to see that the term hH (H1, . . . ,Hm) can be replaced in the objec-
tive function by 1

2‖ω1‖2, once the following set of constraints is included in the
model:

1

2
‖ωr−1‖2 ≥ 1

2
‖ωr‖2, ∀r = 2, . . . ,m. (2)

As already applied in multivariate linear regression or binary SVM, other norms
can also be used to measure the margin (see Blanco et al. 2018 and Blanco et al.
2019).

For the second term, the in-margin misclassification error, hI

(
xi , yi ,Hr

)
, corre-

sponding to the observation (xi , yi ) will be identified with the continuous variable
eir ≥ 0, for i = 1, . . . , n, r = 1, . . . ,m. Observe that to properly determine
these errors, one has to determine whether the observation xi is well-classified or
not with respect to the r th hyperplane. In order to do that we need to introduce
some binary variables. First, we consider the two following sets of binary vari-
ables:

tir =
{
1 if ωt

r xi + ωr0 ≥ 0,
0 otherwise.

and zis =
{
1 if i is assigned to class s,
0 otherwise.

for i = 1, . . . , n, r = 1, . . . ,m, s = 1, . . . , k. The t-variables model the sign-pattern
of the observations, while the z-variables give the allocation profile of observations to
classes. Asmentioned above, the classification rule is based on assigning sign-patterns
to classes.

The adequate definition of the t-variables is assured with the following constraints:

ωt
r xi + ωr0 ≥ −T (1 − tir ), ∀i ∈ N , r ∈ M (3)

ωt
r xi + ωr0 ≤ T tir ∀i ∈ N , r ∈ M (4)

where T is a big enough constant. Observe that T can be accurately estimated based
on the data set under consideration.
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The following constraints assure the adequate relationships between the variables:

k∑

s=1

zis = 1, ∀i ∈ N , (5)

‖zi − z j‖1 ≤ 2‖ti − t j‖1, ∀i, j ∈ N , (6)

Observe that (5) enforces that a single class is assigned to each observation while (6)
assures that the assignments of two observations must coincide if their sign-patterns
are the same. Additionally, the set of z-variables determines whether an observation
is well-classified. Indeed, let δi ∈ {0, 1}k be defined as δis = 1 if yi = s and 0
otherwise. (Observe that δi is the binary encoding of the class of the i th observation.)
Then, ξi = 1

2‖zi − δi‖1 ∈ {0, 1} assumes the value zero if and only if the observation
i is well-classified, i.e.,

ξi =
{
0 if i is well-classified,
1 otherwise.

Now, we will model whether the i th observation is well-classified or not, with
respect to the r th hyperplane. Observe that themeasure of how far is a wrong-classified
observation from being well-classified, needs a further analysis. One may have a
wrong-classified observation and several training observations in its same class. We
assume that the error for this observation is the misclassification error with respect
to the closest cell for which there are well-classified observations in its class. Thus,
we need to model the decision on the well-classified representative observation for
a wrong-classified observation. In Fig. 6, we illustrate this type of misclassification
errors. The observation xi is wrong-classified but the misclassification error of xi , in
case x j is chosen as its representative (well-classified) observation, is 0 with respect
to hyperplane H1 (note that both xi and x j are in the same side of H1), whereas the
misclassification error with respect toH2 is h. Observe that h is the distance between
xi and the shifted hyperplane defining the halfspace where x j lies in. We consider the
following set of binary variables:

hi j =
⎧
⎨

⎩

1 if x j , which is well classified and verifies y j = yi , is the representative of xi
in its closest cell through hyperplanes,

0 otherwise

These variables require to impose the following constraints:

∑

j∈N :
yi=y j

hi j = 1, ∀i ∈ N , (7)

ξ j + hi j ≤ 1 ∀i, j ∈ N (yi = y j ), (8)

hii = 1 − ξi ∀i ∈ N , (9)
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Fig. 6 Illustration of the
wrong-classification errors

h

H1

H2

xj

xi

The first set of constraints, (7), imposes a single assignment between observations
belonging to the same class. Constraints (8) avoid choosing wrong-classified repre-
sentative observations. The set of constraints (9) enforces well-classified observations
to be represented by themselves.

With these variables, we can model the in-margin errors by means of the following
constraints:

ωt
r xi + ωr0 ≥ 1 − eir − T (3 − tir − t jr − hi j ), ∀r ∈ M, (10)

ωt
r xi + ωr0 ≤ −1 + eir + T (1 + tir + t jr − hi j ), ∀r ∈ M, (11)

These constraints model, by using the sign-patterns given by t , that, eir =
max{0,min{1, 1 − sr (x)(ωt

r xi + ωr0}}. Note that the constraints are active if either
tir = t jr = hi j = 1, i.e., if the well-classified observation x j is the representa-
tive observation for xi and both are in the positive side of the r th-hyperplane; or
tir = t jr = 0 and hi j = 1, i.e., if the well-classified observation x j is the repre-
sentative observation for xi and both are in the negative side of the r th-hyperplane.
Thus, constraints (10) and (11) adequately model the in-margin errors for all obser-
vations. Furthermore, because of (3) and (4), and those described above, the variables
eir always take values smaller than or equal to 1.

Finally, the third addend, the out-margin errors, will be modeled through the con-
tinuous variables dir ≥ 0, for i = 1, . . . , n, r = 1, . . . ,m. With the set of variables
described above, the out-margin misclassification errors can be adequately modeled
through the following constraints:

dir ≥ 1 − ωt
r xi − ωr0 − T (2 + tir − t jr − hi j ), ∀i, j ∈ N (yi = y j ), r ∈ M,

(12)

dir ≥ 1 + ωt
r xi + ωr0 − T (2 − tir + t jr − hi j ), ∀i, j ∈ N (yi = y j ), r ∈ M,

(13)
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Fig. 7 Illustration of the in-margin and out-margin constraints of our model

Constraints (12) are active only if tir = 0 and t jr = hi j = 1, that is, if x j is a well-
classified observation in the positive side of Hr , while xi is wrong-classified in the
negative side of Hr being x j the representative observation for xi (note that if xi is
well-classified then hii = 1 by (9) and then, the constraint cannot be activated). The
second set of constraints, namely (13), can be analogously justified in terms of the
negative side ofHr . The main difference of these constraints with respect to (10) and
(11) is that (12) and (13) are active only if xi is wrong-classified.

According to the above constraints, amisclassifiedobservation xi is penalized in two
ways with respect to each hyperplaneHr . In case that xi is well-classified with respect
toHr , but it belongs to the margin, then eir = 1− sign(ωt

r xi +ωr0)(ω
t
r xi +ωr0) ≤ 1

and dir = 0 (tir = t jr ). Otherwise, if xi is wrong-classified with respect to Hr ,
then dir = 1 − sign(ωt

r xi + ωr0)(ω
t
r x j + ωr0) ≥ 1 and eir = 0 (hi j = 1 and

tir �= t jr ).
We illustrate the rationale of the proposed constraints on the data drawn in Fig. 7.

Observe that A is not correctly classified since it lies within a cell in which the blue-
class is not assigned. Suppose that B, awell-classified observation, is the representative
of A (hAB = 1), then the model would have to penalize two types of errors. The
first one with respect to H2. If we suppose tB2 = 1, then tA2 = 0, leading to an
activation on constraint (12) being dA2 > 0. On the other hand, even though A is well-
classified with respect to H1, we also have to penalize its margin violation. Again,
if we assume tB1 = 1, then tA1 = 1, what would activate constraint (10) being
eA1 > 0.

The above comments can be summarized in the following mathematical program-
ming formulation for the problem:
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min ‖ω1‖2 + C1

n∑

i=1

m∑

r=1

eir + C2

n∑

i=1

m∑

r=1

dir (MCSVM)

s.t. (2)−(13) and additionally,

ωr ∈ R
p, ωr0 ∈ R, ∀r ∈ M,

dir , eir ≥ 0, tir ∈ {0, 1} ∀i ∈ N , r ∈ M,

hi j ∈ {0, 1}, ∀i, j ∈ N ,

zis ∈ {0, 1}, ∀i ∈ N , s ∈ K ,

ξi ∈ {0, 1}, ∀i ∈ N .

(MCSVM) is a mixed integer non linear programming model, whose nonlinear
terms come from the norm minimization in the objective function and constraints
(2), so that they are second order cone representable. In case one chooses the �1-norm
instead of the Euclidean norm, themodel becomes amixed integer linear programming
problem. Therefore, the model is suitable to be solved using any of the available com-
mercial solvers, as Gurobi, CPLEX, etc. Themain bottleneck of the above formulation
relies on the number O(n2) of binary variables.

Remark 3.1 (Ramp Loss misclassification errors) An alternative measure of misclas-
sification training errors is the ramp loss. The ramp loss version of the model is
interesting for certain instances since it allows one to improve the robustness against
potential outliers. Instead of using out of margin hinge loss errors hO , the ramp-loss
measure consists of penalizing wrong-classified observations by a constant, indepen-
dently on how far they are from being well-classified. Given an observation/label,
(x, y), the ramp-loss with respect to H, is defined as:

RL(x, y,H) =
{
0 if x̄ is well-classified
1 otherwise

Note that, for the training sample, the ramp-loss is represented in our model through
the ξ -variables. More specifically, RL(xi , yi ,H) = ξi for all i ∈ N . In order to do
that we just need to introduce the following modifications on the MINLP problem:

min ‖ω1‖2 + C1

n∑

i=1

m∑

r=1

eir + C2

n∑

i=1

ξi (MCSVMRL)

s.t. (2)−(11) and additionally,

ωr ∈ R
p, ωr0 ∈ R, ∀r ∈ M,

eir ≥ 0, ∀i ∈ N , r ∈ M,

hi j ∈ {0, 1}, ∀i, j ∈ N ,

zis ∈ {0, 1}, ∀i ∈ N , s ∈ K ,

tir ∈ {0, 1}, ∀i ∈ N , r ∈ M,

ξi ∈ {0, 1}, ∀i ∈ N .
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Remark 3.2 (Controlling misclassification errors while training the model) The bene-
fits of imposing a minimum accuracy, sensitivity, or specificity on the training sample
of binary SVMmodels has been recently analyzed by Benítez-Peña et al. (2018). As it
has been pointed out before, the ξ -variables in our model allow us to know whether an
observation is well or wrong-classified. Hence, using these variables one may impose
a minimum desired accuracy on the training sample in the multiclass scenario. Given
a minimum threshold for the accuracy, μ ∈ (0, 1], the following constraint enforces
to construct a classification rule with at least an accuracy of μ:

1

n

n∑

i=1

ξi ≤ 1 − μ.

Observe that the left-hand-side of the inequality indicates the proportion of wrong-
classified observations. Thus, by fixing μ = 1, our models guarantee a perfect
classification on the training sample for a large enough number of hyperplanes (m),
independently of the chosen kernel. This property is especially outstanding in the lin-
ear kernel case, in which other multiclass SVM methods may not achieve a perfect
classification on some training samples.

Moreover, the same analysis can be applied to subset of classes, extending the
notions of specificity and sensibility in binary classification to a multiclass classifica-
tion rule. Actually, if one desires to impose a minimum true rate on a given subset
of the classes, S ⊆ {y1, . . . , yk}, one can easily modify the previous constraint as
follows:

1

|S|
∑

i∈N :
yi∈S

ξi ≤ 1 − μ.

3.1 Building the classification rule

Keep in mind that the main goal of multiclass classification is to determine a decision
rule such that, given any observation, it is able to assign it a class, i.e., to determine the
optimal suitable assignment. Hence, once the solution of (MCSVM) is obtained, the
decision rule has to be derived. Given x ∈ R

p, two different situations are possible: (a)
x belongs to a cell with an assigned class; and (b) x belongs to a cell with no training
observations inside, so with non assigned class. For the first case, x is assigned to
its cell’s class. In the second case, different strategies to determine a class for x are
possible.

We propose the following assignment rule based on the same allocation methods
used in (MCSVM): observations are assigned to their closest well-classified repre-
sentatives. More specifically, let s(x) be the sign-pattern of x with respect to the
optimal arrangement of hyperplanesH∗ = {(ω∗

1, ω
∗
10), . . . , (ω

∗
m, ω∗

m0)} obtained from
(MCSVM), and let J = { j ∈ {1, . . . , n} : ξ∗

j = 0} (here ξ∗ stands for the optimal vec-
tor obtained by solving (MCSVM)). Then, among all the well-classified observations
in the training sample, J , we assign to x the class of the one whose cell is the closest
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(less separated from x). Such a classification of x can be obtained by enumerating
all the possible assignments, O(|J |) and computing the distance measure over all of
them. Equivalently, one can solve the following mathematical programming problem:

min
n∑

j∈J

m∑

r=1
s(x j )r+s(x)r=0,

γ j |(ω∗
r )

t x + ω∗
r0|

s.t.
∑

j∈J

γ j = 1,

γ j ∈ {0, 1},∀ j ∈ J

where γ j =
{
1 if x is assigned to the same cell as x j ,
0 otherwise.

The integrality condition in the problem above can be relaxed, since the unique
constraint in the problem is totally unimodular and thus, the problem is a linear pro-
gramming problem. Clearly, the solution of the above problem gives the optimal
labelling of x with respect to the existing cells in the arrangement.

One could also consider other robust measures for such an assignment following
the same paradigm, as min-max error or the like.

3.2 Nonlinear multiclass classification

Finally, we analyze a crucial question in any SVM-based methodology, which is
whether one can apply the Theory of Kernels in our framework. Using kernels means
being able to map the observations (via some transformation ϕ : R

p → R
P ) to a

higher dimensional space, where the separation of the data is more adequately per-
formed. If the desired transformation, ϕ, is known, one could transform the data and
solve the problem (MCSVM) with a higher number of variables. However, in binary
SVMs, formulating the dual of the classification problem, one can observe that it only
depends on the original data via the inner products of each pair of observations (orig-
inally in Rp), i.e., through the amounts xti x j for i, j = 1, . . . , n. If the transformation
ϕ is applied to the data, the observations only appear in the (classical SVM) problem as
ϕ(xi )tϕ(x j ) for j = 1, . . . , n. Thus, kernels are defined as generalized inner products
as K (a, b) = ϕ(a)tϕ(b) for each a, b ∈ R

p, and they can be introduced using any
of the well-known families of kernel functions (see e.g., Horn et al. 2016). Moreover,
Mercer’s theorem gives sufficient conditions for a function K : Rp × R

p → R to
be a kernel function (one which is constructed as the inner product of a transforma-
tion of the features). This result allows one to construct kernel measures that induce
transformations. The main advantage of using kernels, apart from a probably better
separation in the projected space, is that in binary SVM, the complexity of the trans-
formed problem is the same as the original one.More specifically, the dual problems
have the same structure and the same number of variables.

Although problem (MCSVM) is aMINLP, and then, duality results do not hold, one
can apply decomposition techniques to separate the binary and the continuous variables
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and then, iterate over the binary variables by recursively solving certain continuous
and easier problems (see e.g., Benders 1962; Geoffrion 1972). The following result,
whose proof can be found in the extended version of this paper Blanco et al. (2019),
states that our approach also allows us to find nonlinear classifiers via the kernel tools.

This result is interesting by itself since links the general theory of nonlinear clas-
sifiers, very well-known for the standard SVM theory with Euclidean distance, to
our multiclass framework. It is worth noting that for a function hH (H1, . . . ,Hm) =∑m

r=1 ‖ωr‖2 the usual kernel trick construction applies mutatis-mutandis. Neverthe-
less, as pointed out in Sect. 2.1, we elaborate our approach based on the natural
measure of margin that maximizes the minimum separation between classes, namely
hH (H1, . . . ,Hm) = max{‖ω1‖2, . . . , ‖ωm‖2}. This change implies that the mathe-
matical development known for the standard kernel trick does not carry over our new
approach without a further analysis. We prove below that in this new framework one
can also find nonlinear multiclass classifiers that, as in the standard SVM case, only
depend on the transformation by means of inner products of the original data. Hence,
extending the kernel trick to this multiclass framework.

Theorem 3.1 Let ϕ : Rp → R
P be a transformation of the feature space. Then, one

can obtain a multiclass classifier which only depends on the original data by means
of the inner products ϕ(xi )tϕ(x j ), for i, j = 1, . . . , n.

Proof The proof is detailed in the extended version of this paper (Blanco et al. 2019).
��

4 Amath-heuristic algorithm

Asmentioned above, the computational burden for solving (MCSVM), that is a mixed
integer non linear programming problem (in which the nonlinearities come from the
normminimization in the objective function), is the combination of the discrete aspects
and the non-linearities in themodel. In this sectionwe provide some heuristic strategies
that allowus to cut down the computational effort byfixing someof the variables. Itwill
also provide good-quality initial feasible solutions when solving, exactly, (MCSVM)
using a commercial solver. Two different strategies are provided. The first one consists
of applying a variable fixing strategy to reduce the number of h-variables in the model
(originally n2). The second approach consists of fixing to zero some of the z-variables.
These nk variables allow us to model assignments between observations and classes.
The proposed method is a math-heuristic approach, since after applying the adequate
dimensionality reductions, Problem (MCSVM) (or (MCSVMRL)) has to be solved.
Also, although our strategies do not ensure any kind of optimality certificate, they
produce a very good performance as will be shown in our computational experiments.
Observe that when classifying datasets, themeasure of the efficiency of a decision rule,
as ours, is usually assessed by means of the accuracy of the classification on out-of-
sample data, whereas the objective value of the proposedmodel is just an approximated
measure of such an accuracy which cannot be computed only with the training data.
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Algorithm 1: A math-heuristic approach.
1. Apply dimensionality reductions test based on algorithms 2 and 3.
2. Find an initial solution generating k separating hyperplanes.
3. Solve problem (MCSVM) (or (MCSVMRL)) up to a prescribed accuracy for

the train data.

In what follows we describe two strategies to reduce the dimensionality of the
problem. These approaches are based on applying clustering techniques to the data.
The methods are sensible to the number of clusters. For determining this parameter,
we run a hierarchical clustering method, using as termination criterion a given squared
Euclidean distance between the observations and their centroids.

4.1 Reducing the h-variables

Our first strategy comes from the fact that for a given observation xi , there may be
several possible choices for hi j to assume the value one with the same final result.
Recall that hi j could be equal to one whenever x j is a well-classified observation in
the same class as xi . The errors eir and dir are then computed by using the class of
x j but not the observation x j itself. Thus, if a set of well-classified observations of
the same class is close enough, only one of them can be the representative element of
the group. In order to illustrate the procedure, we show in Fig. 8 (left) a 4-classes and
24-points instance in which the classes are easily identified by applying any clustering
strategy. In such a case (MCSVM) has (24 × 24 =) 576 h-variables, but if we allow
h only to take value 1 at a single point in each cluster, we obtain the same result but
reducing to 162 (24 × 6 + 18, where the 18 comes from the observation mentioned
in the formulation in which each well-classified observation can be a representative
element of itself) the number of variables. In Fig. 8 (right), we show some clusters

Fig. 8 Clustering observations for reducing h-variables
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based on the data, and a (random) selection of a unique point at each cluster for which
the h-values are allowed to be one.

This strategy is summarized in Algorithm 2.

Algorithm 2: Strategy to reduce h-variables.
1. Cluster the dataset by approximated classes: C1, . . . , Cc.
2. Randomly choose a single point at each cluster, xi j ∈ C j , for j = 1, . . . , c.
3. Set hi j = 0 for j /∈ {i1, . . . , ic}.

4.2 Reducing the z-variables

The second strategy consists of fixing to zero some of the point-to-class assignments
(z-variables). In the picture shown in Fig. 9 (left), one can see a set of points which
seems reasonable to group in 5 clusters. One may notice that assignments from the
red class to the black class (and vice versa) are rarely going to occur following our
approach. This is due to the fact that given this configuration of points, our model
would provide a cell for red points located far from a black cell (otherwise it would
probably not be maximizing the distance between classes). Following this idea, we
derived a procedure to fix some of the z-variables to zero. Another observation that
comes fromFig. 9, is that with respect to the red cluster we obtain the following sorting
on the set of distances: d1green ≤ dblue ≤ dblack ≤ d2green . Then, since d

1
green < d2green ,

we may not take into account the distance to the green cluster on the very right. Thus,
we would fix to zero all zis variables that relate the red cluster with the maximum of
their minimum distance set, that is, in this case we would fix to zero the zis-variables
associated to the black cluster with the red cluster (d1green < dblack and dblue < dblack)
and vice versa.

The above observations lead us to some strategies for fixing z-variables to zero that
we summarize in Algorithm 3.

Fig. 9 Illustration of the strategy to reduce the z-variables
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Algorithm 3: Strategy to reduce z-variables.
1. Group the observations in L clusters, being each cluster formed by points

of the same class. Let a�s be the centroids of the cluster, � = 1, . . . , L ,
s ∈ {1, . . . , k}.

2. Compute the squared Euclidean distance matrix between centroids:

D =
(
‖a�s − aqs′ ‖2

)
.

3. For each cluster �, � = 1, . . . , L , assigned to class s, compute the cluster q
with class s′ �= s such that ‖a�s − aqs′ ‖2 is maximum and greater than a
given threshold. For each observation i in cluster q, set zis = 0. For each
observation ı̂ in cluster �, set z ı̂s′ = 0.

5 Experiments

In this section we report the results of our computational experience. We have run
a series of experiments to analyze the performance of our model in both real and
synthetic datasets. In what follows we describe the instances and the obtained results.

5.1 Real datasets

First, we study some real datasets widely used in the classification literature, and
that are available in the Lichman (2013). Summarized information about the datasets
is detailed in Table 1. In such a table we report, for each dataset, the number of
observations considered in the training sample (nTr) and test sample (nTe), the number
of features (p), the number of classes (k), the number of hyperplanes used in our
separation (m), and the number of hyperplanes required by the OVO methodology
(mOVO).

For these datasets, we have run both the hinge-loss (MCSVM) and the ramp-loss
(MCSVMRL) models, measuring the margin with the �1 and the �2 norms. We have
performed a 5-cross validation scheme to test each of the approaches. Thus, the data
sets were split into 5 train-test random partitions. Then, the models were solved for the
training sample and the resulting classification rule was applied to the test sample. We

Table 1 Data sets used in our
computational experiments

Dataset nTr nTe p k m mOVO

Forest 75 448 28 4 3 6

Glass 75 139 10 6 6 15

Iris 75 75 4 3 2 3

Seeds 75 135 7 3 2 3

Waveform 1000 4000 21 3 2 3

Wine 75 103 13 3 2 3

Zoo 75 26 17 7 4 21
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report the average accuracy, ACC, in percentage, of the 5 repetitions of the experiment
on test:

ACC = #Well Classified Test Observations

nTe
· 100.

The parameters of our models were also chosen after applying a grid-based 4-cross
validation scheme. In particular, we calibrate the value of m (number of hyperplanes
to be located) and the misclassification costs C1 and C2 in:

m ∈ {2, . . . , k}, C1,C2 ∈ {0.1, 0.5, 1, 5, 10}.
For hinge-loss models C1 = C2, whereas for ramp-loss models we consider

C1 < C2 to give a high penalty to wrong-classified observations. As a result we
obtain a misclassification error for each grid point, and we choose the combination of
parameters that provide the lowest error. The same methodology was also applied to
the other methods: OVO,Weston-Watkins (WW), Crammer-Singer (CS) and Lee, Lin
and Wahba (LLW), calibrating the misclassifying cost C in {10i , i = −6, . . . , 6}.

The mathematical programming models solving the MCSVMmethods were coded
in Python 3.6, and solved using Gurobi 7.5.2 on a PC Intel Core i7-7700 processor at
2.81GHz and 16GBofRAM.The standardmethods (OVO,WWandCS)were applied
using R-KernLab. Finally, LLW was applied using the software package MSVMpack
and Guermeur (2011).We apply our math-heuristic strategies (Sect. 4) by determining
the parameters c and L with the k-mean clustering technique.

In Table 2we report the average accuracies obtainedwith our 4models: ((MCSVM)
and (MCSVMRL) with �1 and �2 norms) and those obtained with OVO, WW, CS and
LLW. The first two columns (�1 RL and �1 HL) show the average accuracies of our
two approaches (Ramp Loss - RL- and Hing Loss -HL-) using the �1-norm. On the
other hand, the third and four columns (�2 RL and �2 HL) provide the same results for
the �2-norm. In the last four columns, we report the average accuracies obtained with
the OVO, WW, CS and LLW methods. The best accuracies obtained for each dataset
are bolfaced in Table 2.

One can observe that our methods always outperform the results obtained by OVO,
WW and CS, although the results are rather similar. Actually, running the two samples
proportion test among them, we can not ensure significant differences in all cases.
Comparing our methods with LLW the results are different. In four out of the 7
databases (Forest, Glass, Iris and Wavefront) our methods are superior to
LLWwith up to 10% significant differences with respect to the two samples proportion
tests. In the remaining three databases (Seeds, Wine and Zoo) the results are similar
with no statistical significant differences with respect to the two samples proportion
test.

The results indicate that these UCI databases are friendly for linear classifiers (with
the only exception of Glass) and thus all thesemethods perform reasonablywell on test
prediction. Thus, it is not possible to establish a clear ranking of these classification
methods based only on these databases. In order to asses a more complete comparative
of the methods we continue the analysis in the following subsection with a battery of
more complex datasets.

123



V. Blanco et al.

Table 2 Average accuracies obtained for the real-world instances

Dataset �1 RL �1 HL �2 RL �2 HL OVO WW CS LLW

Forest 80.66 80.12 82.30 81.62 82.10 78.40 78.60 72.54

Glass 64.92 64.92 65.32 65.32 58.76 56.25 59.26 57.04

Iris 95.08 95.40 96.44 96.66 93.80 96.44 96.44 84.17

Seeds 93.66 93.66 93.52 93.52 91.02 93.52 93.52 95.46

Waveform 89.17 89.17 91.27 91.27 85.95 86.32 85.12 71.46

Wine 95.20 95.20 96.82 96.82 96.34 96.09 96.17 96.31

Zoo 89.75 89.75 89.75 89.75 87.44 87.68 87.68 91.53

Fig. 10 A 2-dimensional illustration of our instances

5.2 Synthetic experiments

This section reports extra computational experiments over some synthetic instances
that allow us to establish some rank of the methods based on their accuracies. We have
generated 6 instances of 750 observations in R

10 distributed as multivariate normal
distributions separated by a constant factor. In addition to these, we have also gen-
erated a bigger instance with 3000 observations belonging to 12 different classes.
The instances are denoted as XCYN where X is the number of classes (ranging
in {2, 3, 4, 7, 10, 12}) and Y the number of different multivariate normal distribu-
tions (ranging in {4, 6, 8, 15, 20, 24}). All the instances are available at http://bit.
ly/SynthData_MCSVM for benchmarking purposes. Observe that for each instance,
the class labels have been randomly assigned to the normal distributions. For illus-
tration purposes, a two-dimensional instance generated in the same way that our
10-dimensional instances is shown in Fig. 10: the data are generated according to
20 normal distributions which are assigned to 10 classes.
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Table 3 Average accuracies
obtained for the synthetic
instances

Dataset �2 HL m OVO WW CS LLW

2C4N 94.35 2 60.75 60.75 60.75 60.75

3C6N 85.74 3 39.47 41.69 39.03 36.50

4C8N_1 92.76 4 36.46 32.37 29.14 31.86

4C8N_2 91.78 4 48.54 35.14 34.69 39.14

7C15N 88.54 6 27.37 19.64 18.63 20.35

10C20N 85.81 7 29.73 16.17 15.37 15.10

12C24N 86.71 8 28.02 18.14 13.13 14.19

In Table 3 we report the average accuracies obtained with a tenfold cross validation
experiment, in which 75 observations are taken into the training samples and 675 in the
test samples for the first six instances, whereas 300 and 2700 observations are taken
for the train and test samples in the last instance. As before, we have compared our
approach (with the Euclidean norm and Hinge-Loss misclassification error) with the
existing methodologies: OVO, WW, CS and LLW. The calibration of the parameters
was also done as in the previous section.

One can observe in Table 3 that the results obtained with our approach are much
better than those obtainedwith the other approaches. The generation procedure permits
that, in the synthetic instances, separated clouds of points are assigned to the same
class. As it can be anticipated, our methodology adapts well to this characteristic
whereas the other approaches fail to handle these data. The reader may observe that
this type of data are common in real-world datasets. In particular, many diseases are
associated to low or high values of certain medical indices thus fitting to this topology
in which separated clusters of observations belong to the same class.

Our main conclusion, from the results reported in Table 3, is that our method is
adequate for this type of synthetic data, highly outperformingOVO,WW,CSandLLW.
Moreover, the accuracy percentages are not only superior but they are also statistically
better with respect to the two samples proportion test with a significance level of 1%.

6 Conclusions

In this paper we propose a novel modeling framework for multiclass classification
based on the Support Vector Machine paradigm, in which the different classes are
linearly separated and the separation between classes is maximized. We propose two
approaches, that depend on the way to account for the misclassification error, to com-
pute an optimal arrangement of hyperplanes subdividing the space into cells, and so
that each cell is assigned to a class based on the training data. The models result in
Mixed Integer (Linear and Non Linear) Programming problems. Some dimension-
ality reduction and preprocessing strategies are presented in order to help solvers to
find good (optimal) solutions of the corresponding problems. We also prove that an
analogue of the kernel trick can be extended to this framework. The performance of
this approach is illustrated on some well-known datasets of the multi-category classi-
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fication literature as well as in some synthetic, but still realistic, examples, in which
our approach works remarkably well compared to the existing methodologies. Several
extensions of our approach are possible. Among them we would like to mention the
use of heuristic algorithms to solve the complex mixed integer nonlinear programs
which may alleviate the computational burden of the methodology still keeping high
quality solutions. Moreover, our approach could also be extended to the framework
of semisupervised learning (see e.g., Bennett and Demiriz 1999; Ortigosa-Hernández
et al. 2016) by assigning unlabelled observations to their closest well-classified cells
(which are obtained using the labeled training data). Both research lines seem to be
promising and will be the focus of a forthcoming paper.
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